答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.
⑴乙追上丙需:280\(80-72)=35(分钟).
⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的平均值,即(80+72)\2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+280\2)\(90-76)=30(分钟).
经比较,甲第一次与乙、丙的距离相等需经过30分钟.
解:设山脚到山顶的距离为3与5的最小公倍数。3×5=15(千米)上山用:15÷3=5(小时)下山用:15÷5=3(小时)总距离÷总时间=平均速度(15×2)÷(5+3)=3.75(千米)答:他上、下山的平均速度是每小时3.7
解:这一段地全长96米,从一端每隔4米挖一个坑,一共要挖树坑:96÷4+1=25(个)后来,改为每隔6米栽一棵树,原来挖的坑有的正好赶在6米一棵的坑位上,可不重新挖。由于4和6的最小公倍数是12,
解:将这九个数分别分解质因数:15=3×522=2×1130=2×3×535=5×739=3×1344=2×2×1152=2×2×1377=7×1191=7×13观察上面九个数的质因数,不难看出,九个数的质因数中共有六个2,
解:3250-10=3240(个)把3240分解质因数:3240=23×34×5接近40的数有36、37、38、39这些数中36=22×32,所以只有36是3240的约数。23×34×5÷(22×32)=2×32×5=90答:这个幼儿园有90名