
这道题初看太抽象,既不知道圆桌的大小,又不知道硬币的大小,谁知道该怎样放呀!我们用对称的思想来分析一下。圆是关于圆心对称的图形,若A是圆内除圆心外的任意一点,则圆内一定有一点B与A关于圆心对称(见右图,其中AO=OB)。
所以,圆内除圆心外,任意一点都有一个(关于圆心的)对称点。由此可以想到,只要甲把第一枚硬币放在圆桌面的圆心处,以后无论乙将硬币放在何处,甲一定能找到与之对称的点放置硬币。也就是说,只要乙能放,甲就一定能放。最后无处可放硬币的必是乙。
甲的获胜策略是:把第一枚硬币放到圆桌面的圆心处,以后总在乙上次放的硬币的对称点放置硬币。
这种利用对称思想的获胜策略体现出了一种机智,而这种机智来源于数学思想。同学们经常进行这种锻炼,就会变得越来越聪明。比如,有两堆火柴,第一堆20根,第二堆25根,甲、乙二人轮流从中取火柴,每次可以从任一堆中取走任意数量的火柴,取走最后一根火柴者胜。甲先取,怎样才能保证获胜?利用对称的思想分析,只要甲先从第二堆中取走5根,此时两堆火柴的数量相等(也是一种对称),以后无论乙从哪一堆取多少根火柴,甲都对称地从另一堆取相同数量的火柴,只要乙能取,甲就能取,所以最后一根必被甲取走,甲胜。
某商店出售啤酒,规定每5个空啤酒瓶能换1瓶啤酒。张叔叔家买了80瓶啤酒,喝完后再按规定用空啤酒瓶去换啤酒,那么他们家前后共能喝到多少瓶啤酒?
2018-12-20 09:23:55
分析与解:我们按照实际换酒过程分析:喝掉80瓶啤酒,用80个空瓶换回16瓶啤酒;喝掉16瓶啤酒,用16个空瓶换回3瓶啤酒余1个空瓶;喝掉3瓶啤酒,连上次余下的1个空瓶还剩4个空瓶。此时,再借1
是否存在自然数n,使得n2+n+2能被3整除?
2018-12-19 18:50:18
分析与解:枚举法通常是对有限种情况进行枚举,但是本题讨论的对象是所有自然数,自然数有无限多个,那么能否用枚举法呢?我们将自然数按照除以3的余数分类,有整除、余1和余2三类,这样
从1,5,9,13,……993中,任意找出199个数,把它们乘起来,积的个位可能是什么?
2018-12-19 18:39:51
解析:首先这个数列一共有249个数字.其中个位数字为5的有50个.任何一个奇数乘以5,他的积的个位始终是5.249-50=199,所以尾数不带5的数字有199个.现在要199个,也就是说只有两种
从1999这个数里减去253以后,再加上244,然后再减去253,再加上244......,这样一直减下去,减到第多少次,得数恰好等于0?
2018-12-19 17:59:36
分析:这道题目看似简单,因为一个循环减少9,有的同学认为只要求1999能被9整除多少次即可。其实还隐藏着一个问题:如果1999这个数在某一点也就是在减253加244过程中有可能运算完只