【思路导航】
根据甲、乙两港的距离和从甲港到乙港的时间可以求出顺水速度是每小时200÷10=20(千米/小时),顺水速度是船速与水速的和,已知船速是水速的9倍,可以求出水速是20÷(1+9)=2(千米/小时),船速为2×9=18(千米/小时),逆水速度为18-2=16(千米/小时)
解:顺水速度:200 ÷10=20(千米/小时)
水速:20÷(1+9)=2(千米/小时)
船速:2×9=18(千米/小时)
逆水速度:18-2=16(千米/小时)
返回时间:200÷16=12.5(小时)
答:这艘轮船从乙港返回甲港用12.5个小时。
【思维链接】此题中“已知船速是水速的9倍”,可知船速与水速的和相当于水速的(1+9)倍,也就是顺水速度相当于水速的(1+9)倍,根据这个倍数关系我们就可以轻松的求出水速和船速。
一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?
2019-07-26 19:16:10
求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度。顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水
李经理的司机每天早上7点30分到家接他去公司上班,有一天李经理7点从家出发步行去公司,路上遇到按时来接他的车,乘车去公司,结果早到5分钟.问李经理什么时间遇上汽车?汽车速度是步行速度的几倍?
2019-07-26 18:43:30
答案与解析:据题意可知,李经理早行了30分钟,由于早行而使接他汽车比平时早到5分钟,所以汽车一个单程节约5÷2=2.5分钟.那么相遇时李经理走了30-2.5=27.5分钟.也就是李经理遇到汽车
有4个数,其中每三个数的和分别是45、46、49、52。那么这4个数中最小的一个数是多少?
2019-07-26 10:06:11
解:12。【解析】先算出这4个数的和。题目中4个数字相加除以3,得出4个数字的和为64,然后减去最大的三个数56.得出答案是12
甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?
2019-07-26 08:28:25
解答:相对的速度问题在数学的学习过程中还是遇到的,简称行程问题,那么这类问题的解答思路是什么呢?就是通过相遇时间去推算结果,还有速度也是一个重要的条件。